
8 NONLINEAR SYSTEMS

We introduce here a few concepts and analysis techniques for nonlinear systems. The analy-
sis and control of linear systems is a necessary step in understanding nonlinear dynamics.
Although, as we have seen, almost every nonlinear system can be locally approximated by
a linearized system, this corellation should not be pushed too far. For nonlinear systems
the principle of superposition of solutions does not hold. There are no separate natural and
forced motions. Twice the input does not mean twice the output. For nonlinear systems
there may be a significant dependence of the response on the magnitude and type of the
excitation. For example, a nonlinear system may have completely different behavior under
step inputs of different magnitude, or sinusoidal inputs of different frequencies. The response
may also depend drastically on the initial conditions. In fact for some systems it may happen
that the long term behavior of the solutions may be effectively random, even though both
the system and the input are purely deterministic, as a result of extreme sensitivity to initial
conditions. Since one can never be exactly certain about the initial state, the final state of
such a system may very well be unpredictable. Such essentially unpredictable deterministic
systems are known as chaotic systems.

8.1 Introduction

As a first example of what may happen when nonlinearities are present in a physical system,
consider the so called Duffing’s equation. This is nothing but a spring–mass–damper system
with nonlinear spring force characteristics,

mẍ + bẋ + kx + αx3 = 0 .

The spring force is kx + αx3 instead of kx that would be if the spring were linear. We call
the case of α > 0 a hardening spring, and α < 0 a softening spring. A typical example would
be the familiar GZ(φ) curve: it has the characteristics of a hardening spring for small φ for
a surface ship, and a softening spring for a submarine. The plot of spring force vs. spring
displacement would typically appear as shown in Figure 39.

We know that the natural frequency of oscilation of the linear spring system is ωn =√
k/m, in other words it depends only on k and not on the amplitude of oscillation. For a

hardening spring, it can be seen that the equivalent linearized spring constant is k + 3αx2,
which means that it increases with the displacement x. Therefore, we expect the natural
frequency of the hardening spring system to increase with the amplitude of oscillation, as
well. The opposite is true for the softening spring case, α < 0, see Figure 40.

Now consider Duffing’s equation with forcing,

mẍ + bẋ + kx + αx3 = P cos ωt .

We know that the frequency response curve has the familiar shape of Figure 41. It starts
from 1, it may reach a maximum at about ωn depending on the amount of damping, and
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Figure 39: Linear and nonlinear spring force/displacement characteristics

Figure 40: Natural frequency of linear and nonlinear springs
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Figure 41: Frequency response curve for a linear spring

Figure 42: Frequency response curves for nonlinear springs

then it approaches zero. We can observe that the frequency response curve “wraps around”
the amplitude vs. frequency curve we had before. Therefore, we can guess that the frequency
response curves for the hardening and softening nonlinear springs will take one of the two
forms shown in Figure 42.

We can see that depending on the frequency of excitation and upon increasing or de-
creasing this frequency, the system may experience oscillations with different amplitude, or
sudden changes in the amplitude of the response. These phenomena are characteristic of
nonlinear restoring forces and moments, and are called jump phenomena or hysteresis.

A different type of phenomena of nonlinear systems may occur when the system is excited
with input of frequency ω. A linear system would respond only with the same frequency, but
a nonlinear system may experience responses, besides ω, at frequencies ω/n where n is an
integer. These are called subharmonic oscillations. Superharmonic oscillations at frequencies
n · ω are also possible although they are not as severe as the subharmonics. This is because
higher frequencies are usually associated with more damping. The generation of the above
oscillations depends upon the initial conditions, as well as the amplitude and frequency of
the excitation.

One question that one may ask is, how many types are behavior are possible for nonlinear
systems? The answer to this depends mainly on the system dimensionality. Suppose we have
a first order, scalar, system. This involves one variable only, and this can be represented on
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a straight line. Since it is restricted to move on this line, the system can only experience
one or more equilibrium points, and these can be either stable or unstable. Now consider a
second order system, this involves two variables x1, x2, and if we want to plot these together
we need to use a two–dimensional graph, a plane. The solutions in time on this plane can
do whatever they desire except cross each other: this would violate uniqueness of solutions
for all subsequent times, since different response would be obtained from identical starting
conditions. Solutions of dynamic systems, linear or nonlinear, exist and are unique. We can
see that two types of behavior are possible here: the solutions can either approach a point
asymptotically (equilibrium point), or a closed curve on which they may be constrained to
move for ever. This represents a periodic solution. Such an isolated periodic solution is
called a limit cycle and occurs without any periodic excitation! The study of limit cycles
is a very tough but nice problem in nonlinear systems. Now let’s imagine a system with
three or more state variables. We need at least a three–dimensional graph to plot all of our
solutions together here. It is clear that such a system may exhibit both equilibrium points
and isolated periodic solutions or limit cycles. In three or more dimensions, the restriction
that trajectories may not cross does not constrain the solutions to be simple. There is enough
room in three dimensional spaces and beyond so that the solutions they can wrap around
each other, twist, turn, and tangle themselves into fantastic knots as they develop in time,
forming complicated patterns. Therefore, some complex dynamic behavior is possible for
third or higher order systems. Forced and/or discrete systems are usually more complicated.
To summarize we can have the following possible types of behavior for nonlinear systems:

• First order unforced systems: Equilibrium points only.

• Second order unforced systems: Equilibrium points and limit cycles.

• Third order or higher unforced systems: Equilibrium points, limit cycles, possible
complicated behavior.

• Second order or higher forced systems: Equilibrium points, periodic solutions, possible
complicated behavior.

• Discrete systems of any order: Equilibrium points, periodic solutions, possible compli-
cated behavior.

Let’s consider as an example, a Van der Pol equation; a spring–mass–damper system with
nonlinear damping and no forcing,

mẍ − b(1 − x2)ẋ + kx = 0 .

The equilibrium point of this equation is x = 0, the origin. By linearization we can easily
see that the origin is unstable. The linearized system is mẍ − bẋ + kx = 0, and we see that
x = 0 is unstable because of the negative damping term −b. So where are the solutions
going? We have seen that for small x the solutions move away from x = 0. For large x we
can see that the term −b(1 − x2) will become positive, so the damping will be positive and
the solutions will have to move towards x = 0. Therefore, solutions which originate from
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Figure 43: Poincaré’s limit cycle prediction technique

Figure 44: Frequency entrainment

large x will move towards the origin. Since they cannot cross each other and there are no
other equilibrium points to attract them, they have to approach a limit cycle which should
be located somewhere around the origin. This argument, which is known as the Poincaré–
Bendixon theorem, holds for second order systems only and it will reveal the existence of a
limit cycle but it cannot provide any information about its size or frequency. The sketch of
Figure 43 illustrates Poincaré’s argument.

Another phenomenon typical in nonlinear systems is the frequency entrainment. Suppose
we have a system which is capable of exhibiting a limit cycle of frequency ω0. If a periodic
force of frequency ω is applied to this system we have the phenomenon of beats. As the
difference between the two frequencies decreases, the beat frequency also decreases and, for
a linear system, it is zero only if ω = ω0. In a self excited nonlinear system, however,
it is found that the frequency ω0 of the limit cycle falls in synchronization with, in other
words it is entrained by, the forcing frequency ω within a certain band of frequencies. This
phenomenon is illustrated in Figure 44.
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8.2 A Simple Zero Eigenvalue

Suppose we have the nonlinear system of state equations,

ẋ = f(x) .

We know that the equilibrium points, x, of the system are defined by

f(x) = 0 .

This is a nonlinear system of algebraic equations and it may have multiple solutions in x,
which means that the nonlinear system may have more that one positions of static equilib-
rium. If we pick one equilibrium, x, we can establish its stability properties by linearization.
The linearized system becomes

ẋ = Ax ,

where A is the Jacobian matrix of f(x) evaluated at x,

A =
∂f

∂x

∣∣∣∣∣
x

,

and the state x has been redefined to designate small deviations from the equilibrium x,

x → x − x .

As long as all eigenvalues of A have negative real parts, we know that the linear system will
be stable. This means that the equilibrium x will be stable for the nonlinear system as well.
No surprises so far, in fact what we have just said is nothing but Lyapunov’s linearization
technique.

The question we ask ourselves next is, what happens if one real eigenvalue of the linearized
matrix A is zero? The interesting case here is when the rest of the eigenvalues have all
negative real parts, otherwise x is unstable and the problem is solved. If the case of a zero
eigenvalue appears to be too specialized to be of any practical use consider this: Assume that
f(x) depends on one physical parameter (and there will be plenty of physical parameters in
any problem) and that physical parameter is allowed to vary over some range; aren’t they
all? Then it is clear that A will depend on that parameter and as the parameter varies, it is
possible that one real eigenvalue of A will become zero for a specific value of the parameter.
Our problem is then to establish the dynamics of the nonlinear system as one real eigenvalue
of A crosses zero; i.e., goes from negative to positive. As the solutions evolve it time, things
are interesting only along the direction of the eigenvector that corresponds to the critical
eigenvalue (the one that crosses zero). Along the rest of the directions in the state space,
everything should converge back to the equilibrium; remember that we assumed that all
remaining eigenvalues of A have negative real parts. The above statement should be clear
for those of us who haven’t forgotten our ME 2801 or O.D.E. material. Although, strictly
speaking, it is a true statement for linear systems, there are technical reasons that force it to
be true for nonlinear systems as well, the only difference is that the corresponding directions
in the state space are curved instead of straight.
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We can see then that it is possible to approximate our original system by a one–dimensional
system, which is much easier to analyze. The dynamics of the two systems will be qualita-
tively similar. The formalization of the above reduction procedure consitutes what is known
as center manifold reduction, or normal form computation in nonlinear analysis. So let’s see
what happens for the case of a zero eigenvalue by using a (typical) first order system,

ẋ = λx − x3 ,

where x is scalar and λ is our distinguished parameter which is allowed to vary between −1
and +1. The equilibrium points of the system can be found from

λx − x3 = 0 =⇒ x(λ − x2) = 0 ,

and we can see that, depending on the sign of λ the equilibria are

x = 0 ,

if λ < 0, and
x = 0 and x = ±

√
λ ,

if λ > 0. There is only one equilibrium for negative λ, this is x = 0, the trivial equilibrium.
However, as λ crosses zero moving towards positive values a new pair of equilibria appears
out of thin air. These two new equilibria are symmetric (equal plus and minus values), they
are close to the trivial equilibrium initially, but as λ moves away from its critical value, λ = 0,
they move further away from zero. To analyze the stability properties of these equilibria,
let’s pick x = 0 first. The Jacobian is,

∂f

∂x

∣∣∣∣∣
x

= λ − 3x2 .

At x = 0 we get the linearized system

ẋ = λx ,

and we see that x = 0 is stable if λ < 0 and unstable if λ > 0. For x = +
√

λ we get the
linearized system

ẋ =
[
λ − 3

(√
λ

)2
]
x = −2λx .

We can see then that for λ > 0, the equilibrium x = +
√

λ is stable. Remember that for
λ < 0 this equilibrium does not exist. The same is true for the other equilibrium x = −√

λ.
Therefore, we can summarize our findings as follows:

• For λ < 0 only the trivial equilibrium exists and is stable.

• For λ > 0 the trivial equilibrium becomes unstable and a pair of symmetric stable
equilibria are generated.
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Figure 45: Pitchfork bifurcations
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This phenomenon, the loss of stability of an equilibrium and the generation of additional
equilibrium states, is called a pitchfork bifurcation and is very common in nature; Euler
buckling of a beam is a very typical example. In particular, we refer to the above case as the
supercritical pitchfork, this is a rather benign loss of stability since upon loss of stability of
the trivial equilibrium the additional nearby equilibrium states are stable. Graphically, we
can represent this case as shown in Figure 45 where solid curves represent stable and dotted
curves unstable equilibria. We have also indicated the direction of solutions in time of our
system for different values of λ. Occasionally, the above case is referred to as a soft loss of
stability since for small values of λ beyond its critical value, the final steady state of the
system does not differ much from the nominal (trivial) steady state.

As a second example, consider a “similar” system as before, the linear part remains the
same, and the nonlinear part x3 suffers a sign change,

ẋ = λx + x3 .

We can analyze this in exactly the same way as before, and we can draw the following
conclusions (verify these),

• For λ > 0 only the trivial equilibrium exists and is unstable.

• For λ < 0 the trivial equilibrium becomes stable and a pair of symmetric unstable
equilibria are generated.

This case, which is also shown in Figure 45, is called a subcritical pitchfork. A comparison
with the previous case reveals that this is a much more serious loss of stability case. Upon
loss of stability of the trivial equilibrium position, there is no other stable equilibrium in
its vicinity to attract the solutions, which may therefore assume a different state of motion
with what could be observed as a discontinuous jump. Furthermore, even before the trivial
equilibrium loses its stability the domain of attraction becomes very small and a random
perturbation can always throw the system to a different state of motion. This new steady
state may be a limit cycle or, depending on the dimensionality of the system, a more com-
plicated response pattern. This loss of stability, sometimes called a hard loss of stability,
demonstrates the significance of nonlinear terms in the equations of motion.

8.3 A Purely Imaginary Pair of Eigenvalues

Assume now that our nonlinear system has one pair of purely imaginary eigenvalues for some
value of the parameter λ. In other words, this means that as λ is varied over some range, one
pair of complex conjugate eigenvalues of the linearized system matrix A crosses the imaginary
axis. It is assumed that the rest of the eigenvalues of A remain negative or have negative
real parts. We wish to investigate what happens to the nonlinear system during this process.
More specifically, in the previous section we saw that the case of one real eigenvalue crossing
zero is associated with the generation or exchange of stability of additional equilibrium points
for the nonlinear system. The purpose of this section is to show that the corresponding case
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of the real part of one complex conjugate pair of eigenvalues crossing zero is associated with
the generation of periodic solutions or limit cycles for the nonlinear system.

Following similar arguments as before, we can convince ourselves that in the case of a
purely imaginary pair of eigenvalues, the only interesting dynamics of ẋ = f(x) will be
concentrated on a two dimensional space spanned by the eigenvectors which correspond to
the critical pair of eigenvalues of A. We start, therefore, with a two dimensional system in
the rather special form,

ẋ1 = λx1 − ωx2 + ax1(x
2
1 + x2

2) ,

ẋ2 = ωx1 + λx2 + ax2(x
2
1 + x2

2) .

The system admits the trivial equilibrium x1 = x2 = 0. The linearized equations around the
trivial equlibrium are [

ẋ1

ẋ2

]
=

[
λ −ω
ω λ

] [
x1

x2

]
,

with eigenvalues λ±iω. Therefore, for λ = 0 the eigenvalues are purely imaginary (we assume
that ω �= 0). As λ crosses zero, the trivial equilibrium becomes unstable. To compute other
potential equilibrium points for our nonlinear system we use

λx1 − ωx2 + ax1(x
2
1 + x2

2) = 0 ,

ωx1 + λx2 + ax2(x
2
1 + x2

2) = 0 .

If we multiply the first equation by x2, the second by x1, and we add them up, we get

ω(x2
1 + x2

2) = 0 .

Therefore, since ω �= 0, the only equilibrium solution is the trivial equilibrium x1 = x2 = 0.
To proceed with the analysis we introduce polar coordinates, (r, θ), by using the transfor-
mation,

x1 = r cos θ ,

x2 = r sin θ .

The equations of motion are then written as

ẋ1 = ṙ cos θ − rθ̇ sin θ = λr cos θ − ωr sin θ + ar3 cos θ ,

ẋ2 = ṙ sin θ + rθ̇ cos θ = ωr cos θ + λr sin θ + ar3 sin θ ,

which reduce to

ṙ = λr + ar3 ,

θ̇ = ωr .

It is clear that an equilibrium point, r, of the ṙ equation will correspond to a limit cycle
back in the original coordinates x1 and x2. We can see that the ṙ equation has equilibria
given by

λr + ar3 = 0 .
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Figure 46: Hopf bifurcations

Let us assume that a < 0. Then for λ < 0, the trivial equilibrium is stable. For λ > 0
there is a stable limit cycle of radius proportional to the square root of λ surrounding the
unstable trivial equilibrium. If a > 0, then the limit cycle occurs for λ < 0; it is unstable
and surrounds a stable equilibrium point. The two cases are shown schematically in Figure
46. This resembles our pitchfork bifurcation of the previous section. Therefore, we can
summarize our conclusions about the x1, x2 system as follows:

• If a < 0, then:

– If λ < 0 the trivial equilibrium is stable.

– If λ > 0 the trivial equilibrium is unstable, and a family of stable limit cycles

with amplitude ±
√
−λ/a exists.

• If a > 0, then:

– If λ > 0 the trivial equilibrium is unstable.

– If λ < 0 the trivial equilibrium is stable, and a family of unstable limit cycles

with amplitude ±
√
−λ/a exists.

We can see that the situation is similar to our pitchfork case; here we have the generation
of periodic solutions except of equilibrium points. This bifurcation to periodic solutions
is normally called the Poincaré–Andronov–Hopf bifurcation. Analogously to the pitchfork
case, we distinguish here the two major cases, supercritical and subcritical Hopf bifurcation.
For more complicated systems, the reduction to the above two dimensional form and the
computation of the leading nonlinear coefficient a which dictates limit cycle stability can be
a significant undertaking.

8.4 Popov and Circle Criteria

Quite often, we need to analyze a control loop which contains a nonlinearity. Such a typical
loop is shown in Figure 47. The two methods that we describe here enclose the nonlinearity
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Figure 47: The feedback loop to be analyzed by the Popov or circle method

Figure 48: The linear feedback loop that is the subject of Aizerman’s and Kalman’s conjec-
tures

in a linear envelope. The linear envelope rather than the particular nonlinearity is then
used in the subsequent analysis. This approach leads to sufficient but not necessary stability
conditions. Before proceeding to describe graphical techniques for the analysis of a feedback
loop containing a nonlinearity, it is instructive to consider two celebrated conjectures, by
two of the best minds of control theory.

1. The Aizerman and Kalman conjectures:
Aizerman postulated that the system of Figure 47 will be stable provided that the linear
system of Figure 48 is stable for all values of k in the interval [k1, k2] where k1, k2 are defined
by the relation

k1 ≤ N(e)

e
≤ k2 ,

for all e �= 0. In this notation k1, k2 represent a linear envelope surrounding the nonlinearity,
see Figure 51 where A stands for k1 and B for k2. Aizerman’s conjecture, reasonable as it
might sound, is false as has been shown by counter–examples.

Kalman suggested that the system of Figure 47 will be stable provided that the linear
system of Figure 48 is stable for all k in the interval [k̂1, k̂2] where

k̂1 ≤ dN(e)

de
≤ k̂2 ,

and where

k1 ≤ N(e)

e
≤ k2 ,

and
k̂1 ≤ k1 ≤ k2 ≤ k̂2 .

Kalman’s conjecture imposes additional requirements on the nonlinear characteristics but
nevertheless it is also false — again shown by counter–examples. The failure of the two
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Figure 49: Popov’s stability test: The control loop is guaranteed stable

conjectures shows that intuitive reasoning cannot be relied on in nonlinear systems. One
reason for the failure of the conjectures is that instabilities may arise in nonlinear systems
due to the effects of harmonics. These are, of course, absent in linear systems. In the
following, we discuss briefly two techniques for dealing with the problem of Figure 47. These
two techniques, Popov’s and circle criteria, can be viewed as extensions to Nyquist’s stability
criterion for linear systems.

2. Popov’s stability criterion:
Popov developed a graphical Nyquist–like criterion to examine the stability of the loop shown
in Figure 47. It is assumed that G(s) is a stable transfer function. The nonlinearity N(e)
must be time–invariant and piecewise continuous function of e. The derivative dN(e)/de
must be bounded and N(e) must satisfy the condition

0 <
N(e)

e
< k ,

for some positive constant k. Graphically, the last condition means that the curve rep-
resenting N must lie within a particular linear envelope. A sufficient condition for global
asymptotic stability of the feedback loop may then be stated as:

If there exists any real number q and an arbitrarily small number δ > 0 such that

�{(1 + jωq)G(jω)}+
1

k
≥ δ > 0 ,

for all ω then for any initial state the system output tends to zero as t → ∞.

The proof can be found in most textbooks on nonlinear control and it makes use of Lya-
punov’s direct method.
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Figure 50: Popov’s stability test: No line through the −1/k point avoids intersection with
the G∗(jω) locus and the loop may be unstable

Figure 51: The linear envelope for the circle method
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Figure 52: The circle criterion

To carry out a graphical test based on the above equation, a modified transfer function
G∗(jω) is defined by

G∗(jω) = �{G(jω)} + jω	{G(jω)} ≡ X(jω) + jY (jω) .

The criterion then, in terms of X and Y , becomes

X(jω) − qY (jω) +
1

k
≥ δ > 0 .

The G∗(jω) curve (the so called Popov locus) is plotted in the complex plane. The system
is then stable if some straight line, at an arbitrary slope 1/q, and passing through the −1/k
point avoids intersecting the G∗(jω) locus. Figures 49 and 50 show two possible graphical
results for stable and not necessarily stable situations respectively. Recall that the test gives
a sufficient condition for stability and that the feedback loop whose result is given in Figure
50 is not necessarily unstable.

3. The circle method:
The circle method of stability analysis can be considered as a generalization of Popov’s
method. Compared with that method it has two important advantages:

1. It allows G(s) to be open loop unstable;

2. It allows the nonlinearity to be time varying.

The nonlinearity N is assumed to lie within an envelope such that,

Ae < N(e, t) < Be ,

as shown in Figure 51. Then it is a sufficient condition for asymptotic stability that the
Nyquist plot G(jω) lies outside a circle in the complex plane that crosses the real axis at
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the points −1/A and −1/B and has its center at the point,

1

2

[
−

(
1

A
+

1

B

)
+

1

2
jωq

(
1

A
− 1

B

)]
,

for some real value of q. Here it is assumed that A < B.

This is the so called generalized circle criterion. Notice that the center of the circle
depends on both frequency and choice of the value of q. In return for a loss of sharpness
in the result (remembering that the method gives a sufficient criterion), q can be set equal
to zero and then a single frequency invariant circle results (Figure 52). The circle can be
considered as the generalization of the (−1, 0) point in the Nyquist test for linear systems.

8.5 Describing Function Analysis

1. Describing Functions

There are a few tools that can be used to predict the existence, magnitude, and stability of
limit cycles, namely,

• numerical integrations,

• continuation methods,

• perturbation methods,

• describing function analysis.

Numerical integrations are easy to apply but the can only be used to confirm rather than
predict possible behavior, especially when a large number of variables and initial conditions
are present. Continuation methods require some initial approximation of the limit cycle for a
given set of parameters, while perturbation methods are best applied to system with smooth
nonlinearities. Describing function analysis is an approximate method that is best suited to
the discontinuous nonlinearities common in several control systems.

Suppose that the input to a nonlinear element is sinusoidal. The output will be periodic
and suppose that only the component with the same frequency as the input (the fundamental
harmonic component) is significant. The complex quantity

Gd =
C1

M
〈φ1〉 ,

where

M = amplitude of input sinusoid

C1 = amplitude of fundamental harmonic component of output

φ1 = phase shift of fundamental harmonic component of output
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Figure 53: Saturation nonlinearity

Figure 54: Describing function for saturation
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is called the describing function Gd.

2. Computation of Describing Functions

For a sinusoidal input
m(t) = M sin ωt

to the nonlinear element, the output c(t) may be expressed in Fourier series as follows:

c(t) = A0 +
∞∑

n=1

(An cos nωt + Bn sin nωt)

= A0 +
∞∑

n=1

(Cn sin(nωt + φn) ,

where

An =
1

π

∫ 2π

0
c(t) cos(nωt) d(ωt) ,

Bn =
1

π

∫ 2π

0
c(t) sin(nωt) d(ωt) ,

Cn =
√

A2
n + B2

n ,

φn = tan−1
(

An

Bn

)
.

If the nonlinearity is symmetric, then A0 = 0. The fundamental harmonic component of the
output is

c1(t) = A1 cos ωt + B1 sin ωt

= C1 sin(ωt + φ1) .

The describing function is then given by,

Gd =
C1

M
〈φ1〉 =

√
A2

1 + B2
1

M

〈
tan−1

(
A1

B1

)〉
.

As an example, consider the saturation nonlinearity of Figure 53. A Fourier calculation of
the output waveform for a sinusoidal input gives the following describing function

Gd =
2

π


sin−1

(
S

M

)
+

S

M

√
1 −

(
S

M

)2

 .

For a stauration function of slope k the term 2/π in front of the above expression becomes
2k/π. Also, this expression is true for S < M . For S > M , the input signal does not feel the
effcts of the saturation and it behaves just like a linear unity gain; i.e., Gd = 1 for S > M .
A plot of the saturation describing function Gd versus the dimensionless ratio S/M is shown
in Figure 54. A very useful general property for calculating describing functions is:

The describing function of the sum of two elements is the sum of the individual
describing functions.
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Figure 55: Describing function analysis

3. Describing Function Analysis

Consider the closed–loop feedback system of Figure 55 containing a linear element with
transfer function G and a nonlinear element with describing function Gd. If the higher
harmonics are sufficiently attenuated, the describing function Gd can be treated as a complex
gain. Then, the closed loop frequency response is

C(jω)

R(jω)
=

GdG(jω)

1 + GdG(jω)
.

The characteristic equation is
1 + GdG(jω) = 0 ,

or

G(jω) = − 1

Gd(M)
.

If this equation is satisfied, then the system will exhibit a limit cycle with frequency ω and
amplitude M found from the intersection of G(jω) and −1/Gd(M) graphs.

4. Stability of Limit Cycles

To assess the stability of these limit cycles, we have to recognize the similarity between the
above and the Nyquist criterion for linear systems. For example, consider the case shown in
Figure 56. We see that we have two limit cycles with characteristics (MA, ωA) and (MB, ωB)
with MA < MB. Consider the intersection A of the G(jω) and −1/Gd(MA) loci and assume
a small decrease in amplitude MA. The representative point on the −1/Gd locus will move to
a new point, D. This point is not encircled by the G(jω) locus, the system will move further
and further away from the intersection and the oscillations will eventually stop. Therefore,
point A possesses divergent characteristics and it corresponds to an unstable limit cycle.
By a similar argument we can see that point B possesses convergent characteristics and it
corresponds to a stable limit cycle. Indeed, if the amplitude of the limit cycle is decreased
so that the system moves to point F we can see that the new point is encircled by the G(jω)
locus, the oscillations will grow, the system will tend to return to the original intersection
B and the oscillations are stable. As a summary, we can conclude that in general: The limit
cycle is predicted to be stable or unstable according as the locus of −1/Gd crosses the locus
of G (the Nyquist plot) from right to left or from left to right, respectively, as M increases,
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Figure 56: Stability of limit cycles

Figure 57: Stable and unstable limit cycles
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Figure 58: Describing function analysis of saturation in a control loop

Figure 59: Describing function analysis of saturation in a conditionally stable loop

viewed along the direction of increasing ω. This criterion is illustrated by the sketch of
Figure 57.

5. Example: Saturation

Consider a linear system with the saturation nonlinearity shown in Figure 53. Suppose that
the Nyquist diagram for the linear element encloses the −1 point, so that the linear system
is unstable. If there were no saturation, this means that oscillations with ever–increasing
amplitude would develop. To analyze the effect of saturation let us superimpose the graph
of the describing function of the saturation nonlinearity onto the Nyquist diagram, as shown
in Figure 58. We can see that the effect of the saturation (i.e., limit on actuator stroke) is
to generate a stable limit cycle at the intersection point and thus prevent the motions from
becoming arbitrarily large. If the gain of the transfer function is decreased so that the locus
of −1/Gd does not intersect that of G, the system becomes stable and any oscillations that
may develop will eventually die out. No limit cycle (self sustained oscillation) will exist at
steady state.

As another example consider the effects of saturation on a conditionally stable system
as shown in Figure 59. The linear system is here stable since the polar plot avoids the −1
point. In this case we can see that two limit cycles are created one at P1 and another one at
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Figure 60: Deadband nonlinearity

Figure 61: Describing function for deadband

P2. The limit cycle at P1 is unstable, whereas the limit cycle at P2 is stable. Therefore, if the
system amplitude exceeds this value, for example during transient response, self–sustained
oscillations with amplitude corresponding to P2 will develop. In this case even though the
origin is stable, the effect of the saturation is to limit the origin’s domain of attraction.
System response will converge to zero as long as the initial transient does not exceed P1.

6. Example: Deadband

A deadband nonlinearity (Figure 60) can result from Coulomb friction and from overlap of
valve ports in hydraulic systems. The linear gain of the deadband is normalized to one and
any gain present would be considered as part of the linear portion of the loop. Analysis of
the output waveform gives the following describing function

Gd =
2

π


π

2
− sin−1

(
D

M

)
− D

M

√
1 −

(
D

M

)2

 ,

which is plotted in Figure 61.
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Figure 62: Describing function analysis of deadband in a control loop

Figure 63: Nonlinear gain characteristic

We note that −1/Gd is a large negative real number for small inputs to the deadband
element and approaches −1 for large inputs. Suppose the polar plot is as shown in Figure
62. The linear system with this Nyquist plot would be unstable. The limit cycle at the
intersection point is also unstable. This means that the system will actually be stable for
small inputs to the deadband (i.e., as long as the intersection point is not crossed over). If
it seems peculiar that an unstable linear system may become stable with the addition of a
nonlinear element, this is due to the fact that the actual system including the deadband has
very small gain at the origin. In this case, since the deadband generates an unstable limit
cycle, unbounded oscillations will occur if the input to the deadband is large enough. This
is why deadbands are quite undesireble from the stability point of view. In any practical
system, however, the deadband will saturate and the oscillations will become bounded. This
case is treated next.

7. Example: Nonlinear Gain Characteristics
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Figure 64: Saturation and deadband nonlinearity

The describing function of the general nonlinear gain characteristic in Figure 63 is,

Gd = k3 +
2

π
(k1 − k2)


sin−1

(
D

M

)
+

D

M

√
1 −

(
D

M

)2



+
2

π
(k2 − k3)


sin−1

(
S

M

)
+

S

M

√
1 −

(
S

M

)2

 .

The describing functions for saturation and deadband can be obtained from this expression
by letting appropriate quantities be zero. With so many parameters involved, it is better to
look at a particular case. Of interest is a combination of saturation and deadband (Figure
64). In this case k1 = k3 = 0 and k2 = 1 and the describing function is plotted in Figure 65.
Note that the “gain” is small for small inputs, increases to a maximum, then decreases as
the input amplitude M increases. Thus, the quantity −1/Gd starts at −∞ for small inputs,
decreases to a minimum, then again approaches −∞ as the input becomes very large. The
−1/Gd locus and a polar plot of a linearly unstable system are shown in Figure 66. For the
intersections shown, point P1 is an unstable limit cycle and P2 is a stable limit cycle. Note
that this system is stable for small inputs not exceeding P1, but once the input amplitude
becomes greater than at point P2, oscillations will build up to a limit cycle at P2. The −1/Gd

locus has a minimum which approaches but never exceeds the −1 point. Thus, a system
having this characteristic and designed so that the polar plot does not encircle the −1 point
would be stable. However, it is possible for the system to be stable even if the −1 point is
encircled because of the minimum of the −1/Gd locus.

8. Backlash and Hysteresis

Backlash and hysteresis nonlinearities are multivalued. With backlash, the input must be
moved by a certain amount before any motion of the output occurs. Similarly upon reversal.
Generally speaking, backlash can pose a serious threat to the stability of a loop. Dither is a
widely used method of removing backlash. Its is very effective where the backlash is caused
by friction. Dither is a high frequency signal of constant amplitude and frequency which is
added to the control signal at the input to the nonlinearity and has the effect of making the
element appear linear. However, dither cannot be used in certain cases such as gear backlash
because it is difficult to inject, causes wear, and shows in the output.
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Figure 65: Describing function for saturation and deadband

Figure 66: Describing function analysis of saturation and deadband nonlinearity in a control
loop
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Figure 67: Feedback representation of Van der Pol’s equation

Hysteresis nonlinearities constitute a nuisance but not a serious threat to stability. The
most noticeable attribute of elements with hysteresis nonlinearity is an amount of phase lag
at low frequencies.

9. Comments

The describing function analysis is an extension of linear techniques to the study of nonlinear
systems. Typical applications are to systems with few nonlinearities. The analysis is only
approximate: there are instances where the describing function analysis predicts the existence
of limit cycles but the actual system exhibits none, and other instances where the situation
is reversed.

It is more accurate to state that the describing function analysis predicts the likelihood
of limit cycles. The system may exhibit a periodic solution with amplitude and frequency
close to the predicted ones. Final response has to be verified by numerical integrations.

10. A Counter–example: Van der Pol’s Equation

Once more, consider Van der Pol’s equation

ÿ + ε(3y2 − 1)ẏ + y = 0 .

In order to represent this in a “block diagram” form including an appropriate nonlinear
element, we write it as,

ÿ − εẏ + y = −3εy2ẏ or

ÿ − εẏ + y = −ε
d

dt
y3 or

(s2 − εs + 1)y = εs(−y3) or
y

u3
=

εs

s2 − εs + 1
.

Therefore, in feedback form,

G(s) =
εs

s2 − εs + 1
,

with the nonlinearity f(u) = u3, and zero reference input, so that u = −y, see Figure 67.
For the cubic nonlinearity,

Gd =
3M2

4
.
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In order to predict the limit cycle we have to solve

G(jω) = − 1

Gd(M)
,

or
εjω

−ω2 − εjω + 1
= − 4

3M2
,

or
4(ω2 − 1) + j(4 − 3M2)εω = 0 .

Therefore, the frequency of the limit cycle is predicted at

ω = 1 (period 2π) ,

and its amplitude at

M =
2√
3

.

The graphical construction easily shows that this limit cycle is stable.

Now although Van der Pol’s equation cannot be solved analytically, it is possible to ob-
tain asymptotically exact expressions for the limit cycle parameters as ε approaches zero or
infinity. In the small parameter limit (ε → 0), the equation becomes that of a simple har-
monic oscillator with unit angular frequency, coinciding with the prediction of the describing
function method. In the large parameter limit (ε → ∞), a perturbation analysis predicts
period 1.614ε, instead of fixed 2π. In order to understand why the method fails in this case,
take a closer look at the frequency response of the linear component:

G(jω) =
[
−1 +

j

ε

(
ω − 1

ω

)]−1

.

It is clear that, as ε increases, so does the range of ω over which G(jω) ≈ −1. This means
that in the limit of infinite ε we obtain an “all–pass” filter, and hence the harmonic content
of the limit cycle becomes such that the predominant response is no longer simply sinusoidal,
and the describing function approximation cannot be expected to be valid any more.
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